6bed4: IPv6Conly appliances on any network

background and motivation

SIP telephony consists of unconnected islands:

- * IPv4 \Rightarrow NAT \Rightarrow RTP proxy
- * RTP proxy \Rightarrow Media restrictions
- * RTP Proxy \Rightarrow Phone tapping point
- * RTP Proxy \Rightarrow no ENUM, no ITAD, no sip:bakker@orvelte.nep

We should use IPv6 (and only IPv6):

- * Always direct media connections
- * Need to have IPv6 on each end... backport to IPv4

6bed4 | intro

backporting techniques

Support IPv4-only customers in a transitionary way

- * **Ocpm Firmerware** reprograms physical phones
- * SIPproxy64 translates SIP over IPv4 \leftrightarrow SIP over IPv6
- * 6bed4 is a tunnel designed for embedded devices

Today's topic is 6bed4.

requirement: standard technology

- * Open, exchangeable implementations
- * Clarity of standards
- * Expand upon existing work

requirement: simplicity

- * Complex code may simply not fit in an embedded device
- * A simple-to-use solution will be adopted easily
- * Being able to drop NAT traversal is a big selling argument

requirement: any router

- * Appliances cannot assume a co-operative router
- * NAT comes in quite a few flavours
 - \rightarrow they all taste bad though

requirement: zero configuration

- * Configuration is not end-user compatible
- * User accounts cannot be rolled out en masse
- * 10 easy steps will be 12 too many to some

requirement: traceability

- * Abusers of a network should be traceable
- * This usually causes user accounts
- * Publishing the IPv4 address, this could be skipped

desire: stateless tunnel service

- * Straightforward downtime/reboot handling
- * Straightforward traffic diversion
- * Uplink/downlink traffic separation possible

desire: anycast addressable tunnel service

- * A well-known service address could be anycasted over BGP4
- * This can simply be preconfigured into appliances
- * Straightforward to add/remove service nodes

surprise: none of the tunnels will work

Goal	6in4	6to4	Softwire	TSP	Teredo	AYIYA	6bed4
Standard	\checkmark		\checkmark	±	±	×	\checkmark
Simple			×		×	\sim	\checkmark
Any router	×	×			×	\sim	\checkmark
No config	×		×		\checkmark	×	\checkmark
Traceable	×			?	?	\sim	\checkmark
Stateless	\checkmark	\checkmark	×	×	×	×	\checkmark
Anycast	×	\checkmark	×	×		×	\checkmark

We will need another tunnel mechanism... 6bed4

decision: run over udp

- * The most stupid routers can (only) handle TCP, UDP, ICMP
- * UDP will neatly pierce out through NAT
- * Many tunnels have shown this to work

* Tunnel packets are: IPv4 — UDP — IPv6

6bed4 | design | composition

decision: not anonymous

- * For a tunnel, IPv4 is always assumed present
- * Embed the public IPv4 address in the IPv6 address
- * Traceability is 'inherited' from IPv4
- * Also embed the 'outside' UDP port in the IPv6 address

IPv6-side address format:

design composition 6bed4

decision: no registration

- * Traceability would be the only reason
- * This means that 6bed4 is a public service
- * Not necessarily central; it can be done en-route

6bed4 | design | composition

decision: stateless service

on incoming tunnel traffic

6bed4 | design | composition

OpenFortress*

decision: anycast addressable service

- * Select an anycast IPv4 address for the service
- * Perform 6bed4 translation en-route in gateway routers
- * Announce 6bed4 locally through router protocols
- * Announce 6bed4 globally through BGP4
- * Setup redundant 6bed4 service without effort
- * Withdraw the anycast address if maintenance is needed
- * Benefit from BGP4's least-cost routing mechansims

6bed4 | design | composition

decision: stateless autoconfiguration

- * The IPv4 remote end is a well-known address and port
- * The IPv4 local end can be determined locally
- * Statelessness means the client can *assume* the tunnel
- * Over the assumed tunnel, run stateless autoconfiguration
- * Receive a /112 prefix, including 'outside' IPv4 and UDP port
- * Note that /64 is dedicated to Ethernet, but not to autoconfig

6bed4 | design | composition

practicalities and progress

- * OpenFortress programmed a working server and demo-client
- * OpenFortress' 0cpm Firmerware will be an actual client
- * SURFnet hosts the first 6bed4 node: 145.100.190.242
- * OpenFortress proposed draft-vanrein-v6ops-6bed4-00

draft feedback

- * Why not tunnel X?
- * What scope would be 'embedded'?

draft feedback

- * Why not tunnel X?
- * What scope would be 'embedded'?
- * You forgot about local connections! $\rightarrow Oops...$
 - \rightarrow Peer review clearly is a Good ThingTM

train of thought

- * Need to be aware of LAN peers; use multicast
- * The protocol to use would simply be Neighbour Discovery
- * IPv6 on the LAN may raise alarms \rightarrow embed in 6bed4
- * If the LAN fails, perhaps NAT hairpinnnig can work
- * We could also try direct access to a remote peer
- * Anything but symmetric NAT should accept direct 6bed4
- * Effectively bypassing the public 6bed4 server

another approach to nat traversal

- * Have a working IPv6 connection everywhere
- * Start from this ability, and reduce to optimise
- * Make no assumptions about the NAT model
- * Direct connections *will* be found when possible

upcoming changes in draft v01

 $Embedded \rightarrow Revive \ peer-to-peer \ using \ IPv6$

Incorporating direct 6bed4 traffic:

- * Public 6bed4 nodes function as *fallback service*
- * Try the IPv4 address and UDP port directly
- * Underlying IPv4 routing more dynamically
- * Confusion? Remote peer might see changed IPv4/UDP
- * Security? Redirections might be dangerous
- * Keepalive? Asymmetric paths could close holes in NAT

conclusions and references

* SIP over IPv6 holds many advantages... ... and you can switch to it *today*

- * Information about this tunnel: http://devel.0cpm.org/6bed4/
- * Phone firmware using 6bed4 as its IPv6 fallback: http://devel.0cpm.org/firmerware/
- * Wrap IPv6 around your SIP/IPv4 solution: http://devel.0cpm.org/sipproxy64/

* Find news on Diaspora: #0cpm

6bed4 | final

info@openfortress.nl http://openfortress.nl

